Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Adv Healthc Mater ; : e2304144, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581301

RESUMO

Adoptive cell therapies are dramatically altering the treatment landscape of cancer. However, treatment of solid tumors remains a major unmet need, in part due to limited adoptive cell infiltration into the tumor and in part due to the immunosuppressive tumor microenvironment. The heterogeneity of tumors and presence of nonresponders also call for development of antigen-independent therapeutic approaches. Myeloid cells offer such an opportunity, given their large presence in the immunosuppressive tumor microenvironment, such as in triple negative breast cancer. However, their therapeutic utility is hindered by their phenotypic plasticity. Here, the impressive trafficking ability of adoptively transferred monocytes is leveraged into the immunosuppressive 4T1 tumor to develop an antitumor therapy. To control monocyte differentiation in the tumor microenvironment, surface-adherent "backpacks" stably modified with interferon gamma (IFNγ) are developed to stimulate macrophage plasticity into a pro-inflammatory, antitumor phenotype, a strategy as referred to as Ornate Polymer backpacks on Tissue Infiltrating Monocytes (OPTIMs). Treatment with OPTIMs substantially reduces tumor burden in a mouse 4T1 model and significantly increases survival. Cytokine and immune cell profiling reveal that OPTIMs remodeled the tumor microenvironment into a pro-inflammatory state.

2.
ACS Nano ; 18(15): 10439-10453, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38567994

RESUMO

The cGAS-STING pathway plays a crucial role in innate immune activation against cancer and infections, and STING agonists based on cyclic dinucleotides (CDN) have garnered attention for their potential use in cancer immunotherapy and vaccines. However, the limited drug-like properties of CDN necessitate an efficient delivery system to the immune system. To address these challenges, we developed an immunostimulatory delivery system for STING agonists. Here, we have examined aqueous coordination interactions between CDN and metal ions and report that CDN mixed with Zn2+ and Mn2+ formed distinctive crystal structures. Further pharmaceutical engineering led to the development of a functional coordination nanoparticle, termed the Zinc-Mn-CDN Particle (ZMCP), produced by a simple aqueous one-pot synthesis. Local or systemic administration of ZMCP exerted robust antitumor efficacy in mice. Importantly, recombinant protein antigens from SARS-CoV-2 can be simply loaded during the aqueous one-pot synthesis. The resulting ZMCP antigens elicited strong cellular and humoral immune responses that neutralized SARS-CoV-2, highlighting ZMCP as a self-adjuvant vaccine platform against COVID-19 and other infectious pathogens. Overall, this work establishes a paradigm for developing translational coordination nanomedicine based on drug-metal ion coordination and broadens the applicability of coordination medicine for the delivery of proteins and other biologics.


Assuntos
Nanopartículas , Neoplasias , Vacinas , Animais , Camundongos , Neoplasias/terapia , Adjuvantes Imunológicos , Imunoterapia/métodos , Nanopartículas/química
3.
Nat Biomed Eng ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424352

RESUMO

Tumour-associated neutrophils can exert antitumour effects but can also assume a pro-tumoural phenotype in the immunosuppressive tumour microenvironment. Here we show that neutrophils can be polarized towards the antitumour phenotype by discoidal polymer micrometric 'patches' that adhere to the neutrophils' surfaces without being internalized. Intravenously administered micropatch-loaded neutrophils accumulated in the spleen and in tumour-draining lymph nodes, and activated splenic natural killer cells and T cells, increasing the accumulation of dendritic cells and natural killer cells. In mice bearing subcutaneous B16F10 tumours or orthotopic 4T1 tumours, intravenous injection of the micropatch-loaded neutrophils led to robust systemic immune responses, a reduction in tumour burden and improvements in survival rates. Micropatch-activated neutrophils combined with the checkpoint inhibitor anti-cytotoxic T-lymphocyte-associated protein 4 resulted in strong inhibition of the growth of B16F10 tumours, and in complete tumour regression in one-third of the treated mice. Micropatch-loaded neutrophils could provide a potent, scalable and drug-free approach for neutrophil-based cancer immunotherapy.

4.
PNAS Nexus ; 3(1): pgad434, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38187808

RESUMO

Traumatic brain injury (TBI) is a debilitating disease with no current therapies outside of acute clinical management. While acute, controlled inflammation is important for debris clearance and regeneration after injury, chronic, rampant inflammation plays a significant adverse role in the pathophysiology of secondary brain injury. Immune cell therapies hold unique therapeutic potential for inflammation modulation, due to their active sensing and migration abilities. Macrophages are particularly suited for this task, given the role of macrophages and microglia in the dysregulated inflammatory response after TBI. However, maintaining adoptively transferred macrophages in an anti-inflammatory, wound-healing phenotype against the proinflammatory TBI milieu is essential. To achieve this, we developed discoidal microparticles, termed backpacks, encapsulating anti-inflammatory interleukin-4, and dexamethasone for ex vivo macrophage attachment. Backpacks durably adhered to the surface of macrophages without internalization and maintained an anti-inflammatory phenotype of the carrier macrophage through 7 days in vitro. Backpack-macrophage therapy was scaled up and safely infused into piglets in a cortical impact TBI model. Backpack-macrophages migrated to the brain lesion site and reduced proinflammatory activation of microglia in the lesion penumbra of the rostral gyrus of the cortex and decreased serum concentrations of proinflammatory biomarkers. These immunomodulatory effects elicited a 56% decrease in lesion volume. The results reported here demonstrate, to the best of our knowledge, a potential use of a cell therapy intervention for a large animal model of TBI and highlight the potential of macrophage-based therapy. Further investigation is required to elucidate the neuroprotection mechanisms associated with anti-inflammatory macrophage therapy.

5.
Bioeng Transl Med ; 9(1): e10588, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193112

RESUMO

Vaccines are an important tool in the rapidly evolving repertoire of immunotherapies in oncology. Although cancer vaccines have been investigated for over 30 years, very few have achieved meaningful clinical success. However, recent advances in areas such antigen identification, formulation development and manufacturing, combination therapy regimens, and indication and patient selection hold promise to reinvigorate the field. Here, we provide a timely update on the clinical status of cancer vaccines. We identify and critically analyze 360 active trials of cancer vaccines according to delivery vehicle, antigen type, indication, and other metrics, as well as highlight eight globally approved products. Finally, we discuss current limitations and future applications for clinical translation of cancer vaccines.

6.
Sci Transl Med ; 16(728): eadk5413, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170792

RESUMO

The choroid plexus (ChP) of the brain plays a central role in orchestrating the recruitment of peripheral leukocytes into the central nervous system (CNS) through the blood-cerebrospinal fluid (BCSF) barrier in pathological conditions, thus offering a unique niche to diagnose CNS disorders. We explored whether magnetic resonance imaging of the ChP could be optimized for mild traumatic brain injury (mTBI). mTBI induces subtle, yet influential, changes in the brain and is currently severely underdiagnosed. We hypothesized that mTBI induces sufficient alterations in the ChP to cause infiltration of circulating leukocytes through the BCSF barrier and developed macrophage-adhering gadolinium [Gd(III)]-loaded anisotropic micropatches (GLAMs), specifically designed to image infiltrating immune cells. GLAMs are hydrogel-based discoidal microparticles that adhere to macrophages without phagocytosis. We present a fabrication process to prepare GLAMs at scale and demonstrate their loading with Gd(III) at high relaxivities, a key indicator of their effectiveness in enhancing image contrast and clarity in medical imaging. In vitro experiments with primary murine and porcine macrophages demonstrated that GLAMs adhere to macrophages also under shear stress and did not affect macrophage viability or functions. Studies in a porcine mTBI model confirmed that intravenously administered macrophage-adhering GLAMs provide a differential signal in the ChP and lateral ventricles at Gd(III) doses 500- to 1000-fold lower than those used in the current clinical standard Gadavist. Under the same mTBI conditions, Gadavist did not offer a differential signal at clinically used doses. Our results suggest that macrophage-adhering GLAMs could facilitate mTBI diagnosis.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Animais , Camundongos , Suínos , Gadolínio , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Concussão Encefálica/patologia , Macrófagos/patologia
7.
ACS Nano ; 17(16): 15918-15930, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37565806

RESUMO

Natural killer (NK) cell therapies have emerged as a potential therapeutic approach to various cancers. Their efficacy, however, is limited by their low persistence and anergy. Current approaches to sustain NK cell persistence in vivo include genetic modification, activation via pretreatment, or coadministration of supporting cytokines or antibodies. Such supporting therapies exhibit limited efficacy in vivo, in part due to the reversal of their effect within the immunosuppressive tumor microenvironment and off-target toxicity. Here, we report a material-based approach to address this challenge. Specifically, we describe the use of polymeric micropatches as a platform for sustained, targeted activation of NK cells, an approach referred to as microparticles as cell engagers (MACE). Poly(lactide-co-glycolic) acid (PLGA) micropatches, 4-8 µm in diameter and surface-modified with NK cell receptor targeting antibodies, exhibited strong adhesion to NK cells and induced their activation without the need of coadministered cytokines. The activation induced by MACE was greater than that induced by nanoparticles, attesting to the crucial role of MACE geometry in the activation of NK cells. MACE-bound NK cells remained viable and exhibited trans-endothelial migration and antitumor activity in vitro. MACE-bound NK cells activated T cells, macrophages, and dendritic cells in vitro. Adoptive transfer of NK-MACE also demonstrated superior antitumor efficacy in a mouse melanoma lung metastasis model compared to unmodified NK cells. Overall, MACE offers a simple, scalable, and effective way of activating NK cells and represents an attractive platform to improve the efficacy of NK cell therapy.


Assuntos
Melanoma , Neoplasias , Animais , Camundongos , Polímeros/metabolismo , Células Matadoras Naturais , Neoplasias/metabolismo , Imunoterapia Adotiva , Melanoma/metabolismo , Citocinas/metabolismo , Microambiente Tumoral
8.
Proc Natl Acad Sci U S A ; 120(17): e2221535120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37075071

RESUMO

Multiple sclerosis (MS) is an incurable autoimmune disease and is currently treated by systemic immunosuppressants with off-target side effects. Although aberrant myeloid function is often observed in MS plaques in the central nervous system (CNS), the role of myeloid cells in therapeutic intervention is currently overlooked. Here, we developed a myeloid cell-based strategy to reduce the disease burden in experimental autoimmune encephalomyelitis (EAE), a mouse model of progressive MS. We developed monocyte-adhered microparticles ("backpacks") for activating myeloid cell phenotype to an anti-inflammatory state through localized interleukin-4 and dexamethasone signals. We demonstrate that backpack-laden monocytes infiltrated into the inflamed CNS and modulated both the local and systemic immune responses. Within the CNS, backpack-carrying monocytes regulated both the infiltrating and tissue-resident myeloid cell compartments in the spinal cord for functions related to antigen presentation and reactive species production. Treatment with backpack-monocytes also decreased the level of systemic pro-inflammatory cytokines. Additionally, backpack-laden monocytes induced modulatory effects on TH1 and TH17 populations in the spinal cord and blood, demonstrating cross talk between the myeloid and lymphoid arms of disease. Backpack-carrying monocytes conferred therapeutic benefit in EAE mice, as quantified by improved motor function. The use of backpack-laden monocytes offers an antigen-free, biomaterial-based approach to precisely tune cell phenotype in vivo, demonstrating the utility of myeloid cells as a therapeutic modality and target.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Esclerose Múltipla/terapia , Células Mieloides , Sistema Nervoso Central , Monócitos , Camundongos Endogâmicos C57BL
9.
J Control Release ; 357: 84-93, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948420

RESUMO

Cyclic dinucleotides (CDNs), as one type of Stimulator of Interferon Genes (STING) pathway agonist, have shown promising results for eliciting immune responses against cancer and viral infection. However, the suboptimal drug-like properties of conventional CDNs, including their short in vivo half-life and poor cellular permeability, compromise their therapeutic efficacy. In this study, we have developed a manganese-silica nanoplatform (MnOx@HMSN) that enhances the adjuvant effects of CDN by achieving synergy with Mn2+ for vaccination against cancer and SARS-CoV-2. MnOx@HMSN with large mesopores were efficiently co-loaded with CDN and peptide/protein antigens. MnOx@HMSN(CDA) amplified the activation of the STING pathway and enhanced the production of type-I interferons and other proinflammatory cytokines from dendritic cells. MnOx@HMSN(CDA) carrying cancer neoantigens elicited robust antitumor T-cell immunity with therapeutic efficacy in two different murine tumor models. Furthermore, MnOx@HMSN(CDA) loaded with SARS-CoV-2 antigen achieved strong and durable (up to one year) humoral immune responses with neutralizing capability. These results demonstrate that MnOx@HMSN(CDA) is a versatile nanoplatform for vaccine applications.


Assuntos
COVID-19 , Neuropatia Hereditária Motora e Sensorial , Nanopartículas , Vacinas , Humanos , Animais , Camundongos , Manganês , Dióxido de Silício , COVID-19/prevenção & controle , SARS-CoV-2 , Imunoterapia
10.
Nat Biomed Eng ; 7(1): 72-84, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36564626

RESUMO

The effectivity of cancer immunotherapies is hindered by immunosuppressive tumour microenvironments that are poorly infiltrated by effector T cells and natural killer cells. In infection and autoimmune disease, the recruitment and activation of effector immune cells is coordinated by pro-inflammatory T helper 17 (TH17) cells. Here we show that pathogen-mimicking hollow nanoparticles displaying mannan (a polysaccharide that activates TH17 cells in microbial cell walls) limit the fraction of regulatory T cells and induce TH17-cell-mediated anti-tumour responses. The nanoparticles activate the pattern-recognition receptor Dectin-2 and Toll-like receptor 4 in dendritic cells, and promote the differentiation of CD4+ T cells into the TH17 phenotype. In mice, intra-tumoural administration of the nanoparticles decreased the fraction of regulatory T cells in the tumour while markedly increasing the fractions of TH17 cells (and the levels of TH17-cell-associated cytokines), CD8+ T cells, natural killer cells and M1-like macrophages. The anti-tumoural activity of the effector cells was amplified by an agonistic antibody against the co-stimulatory receptor OX40 in multiple mouse models. Nanomaterials that induce TH17-cell-mediated immune responses may have therapeutic potential.


Assuntos
Linfócitos T CD8-Positivos , Nanopartículas , Animais , Camundongos , Diferenciação Celular , Citocinas , Linfócitos T Reguladores , Células Th17/imunologia
11.
J Control Release ; 352: 1093-1103, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36351520

RESUMO

Various anti-tumor nanomedicines have been developed based on the enhanced permeability and retention effect. However, the dense extracellular matrix (ECM) in tumors remains a major barrier for the delivery and accumulation of nanoparticles into tumors. While ECM-degrading enzymes, such as collagenase, hyaluronidase, and bromelain, have been used to facilitate the accumulation of nanoparticles, serious side effects arising from the current non-tumor-specific delivery methods limit their clinical applications. Here, we report targeted delivery of bromelain into tumor tissues through its covalent attachment to a hyaluronic acid (HA)-peptide conjugate with tumor ECM targeting ability. The ECM targeting peptide, collagen type IV-binding peptide (C4BP), was chosen from six candidate-peptides based on their ability to bind to frozen sections of triple-negative breast cancer, 4T1 tumor ex vivo. The HA- C4BP conjugate showed a significant increase in tumor accumulation in 4T1-bearing mice after intravenous administration compared to unmodified HA. We further demonstrated that the systemic administration of bromelain conjugated C4BP-HA (C4BP-HA-Bro) potentiates the anti-tumor efficacy of liposomal doxorubicin. C4BP-HA-Bro decreased the number and length of collagen fibers and improved the distribution of doxorubicin within the tumor. No infusion reaction was noted after delivery of C4BP-HA-Bro. C4BP-HA thus offers a potential for effective and safe delivery of bromelain for improved intratumoral delivery of therapeutics.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Lipossomos/uso terapêutico , Bromelaínas/uso terapêutico , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ácido Hialurônico/uso terapêutico , Nanopartículas/uso terapêutico , Peptídeos/uso terapêutico , Matriz Extracelular , Linhagem Celular Tumoral
12.
J Nanobiotechnology ; 19(1): 398, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34844629

RESUMO

BACKGROUND: Nanoparticles have been used for biomedical applications, including drug delivery, diagnosis, and imaging based on their unique properties derived from small size and large surface-to-volume ratio. However, concerns regarding unexpected toxicity due to the localization of nanoparticles in the cells are growing. Herein, we quantified the number of cell-internalized nanoparticles and monitored their cellular localization, which are critical factors for biomedical applications of nanoparticles. METHODS: This study investigates the intracellular trafficking of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye [MNPs@SiO2(RITC)] in various live single cells, such as HEK293, NIH3T3, and RAW 264.7 cells, using site-specific direct stochastic optical reconstruction microscopy (dSTORM). The time-dependent subdiffraction-limit spatial resolution of the dSTORM method allowed intracellular site-specific quantification and tracking of MNPs@SiO2(RITC). RESULTS: The MNPs@SiO2(RITC) were observed to be highly internalized in RAW 264.7 cells, compared to the HEK293 and NIH3T3 cells undergoing single-particle analysis. In addition, MNPs@SiO2(RITC) were internalized within the nuclei of RAW 264.7 and HEK293 cells but were not detected in the nuclei of NIH3T3 cells. Moreover, because of the treatment of the MNPs@SiO2(RITC), more micronuclei were detected in RAW 264.7 cells than in other cells. CONCLUSION: The sensitive and quantitative evaluations of MNPs@SiO2(RITC) at specific sites in three different cells using a combination of dSTORM, transcriptomics, and molecular biology were performed. These findings highlight the quantitative differences in the uptake efficiency of MNPs@SiO2(RITC) and ultra-sensitivity, varying according to the cell types as ascertained by subdiffraction-limit super-resolution microscopy.


Assuntos
Nanopartículas de Magnetita , Microscopia/métodos , Dióxido de Silício , Análise de Célula Única/métodos , Animais , Transporte Biológico/fisiologia , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Nanopartículas de Magnetita/análise , Nanopartículas de Magnetita/química , Camundongos , Células NIH 3T3 , Células RAW 264.7 , Dióxido de Silício/análise , Dióxido de Silício/química , Dióxido de Silício/metabolismo
13.
ACS Omega ; 6(46): 30942-30948, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34841137

RESUMO

TiO2 is an attractive catalyst for the photocatalytic degradation of organic pollutants. However, owing to its large band gap, it can only be activated by ultraviolet (UV) light, which constitutes a small portion of solar energy. Therefore, there has been significant interest in extending its light absorption range from UV to visible light. In this study, fluorinated TiO2 hollow spheres (FTHSs) were prepared via a rapid and simple wet chemical process using ammonium hexafluorotitanate, and then FTHS/WO3 heterostructures with different weight ratios of the FTHS and WO3 nanoparticles were synthesized via a simple wet impregnation method. The formation of the hybrid structure was confirmed by various characterization techniques. The photocatalytic activity of the synthesized photocatalysts in the photodegradation of rhodamine B, a model pollutant, was evaluated under visible light irradiation. The FTHS/WO3 heterostructures exhibited significantly improved photocatalytic activity compared to the bare FTHS or WO3 nanoparticles. The photodegradation efficiency of the FTHS/WO3 heterostructure in the present study was up to 0.0581 min-1. Detailed mechanisms that lead to the enhanced photocatalytic activity of the heterostructures are discussed. In addition, comparative experiments reveal that the photodegradation efficiency of the FTHS/WO3 heterostructure under visible light irradiation is superior to that of the P25/WO3 heterostructure prepared from the commercially available TiO2 catalyst (P25) via the same impregnation method.

14.
Nat Nanotechnol ; 16(11): 1260-1270, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34594005

RESUMO

Nutritional metal ions play critical roles in many important immune processes. Hence, the effective modulation of metal ions may open up new forms of immunotherapy, termed as metalloimmunotherapy. Here, we demonstrate a prototype of cancer metalloimmunotherapy using cyclic dinucleotide (CDN) stimulator of interferon genes (STING) agonists and Mn2+. We screened various metal ions and discovered specific metal ions augmented STING agonist activity, wherein Mn2+ promoted a 12- to 77-fold potentiation effect across the prevalent human STING haplotypes. Notably, Mn2+ coordinated with CDN STING agonists to self-assemble into a nanoparticle (CDN-Mn2+ particle, CMP) that effectively delivered STING agonists to immune cells. The CMP, administered either by local intratumoural or systemic intravenous injection, initiated robust anti-tumour immunity, achieving remarkable therapeutic efficacy with minute doses of STING agonists in multiple murine tumour models. Overall, the CMP offers a new platform for local and systemic cancer treatments, and this work underscores the great potential of coordination nanomedicine for metalloimmunotherapy.


Assuntos
Imunoterapia , Manganês/farmacologia , Neoplasias/tratamento farmacológico , Nucleotídeos/farmacologia , Animais , Haplótipos/efeitos dos fármacos , Humanos , Imunidade/efeitos dos fármacos , Íons/química , Íons/imunologia , Íons/farmacologia , Manganês/química , Proteínas de Membrana/agonistas , Proteínas de Membrana/química , Proteínas de Membrana/genética , Metais/química , Metais/imunologia , Metais/farmacologia , Camundongos , Nanopartículas/química , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Nucleotídeos/química
15.
Sci Rep ; 11(1): 20738, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671080

RESUMO

Monoclonal antibodies that target SARS-CoV-2 with high affinity are valuable for a wide range of biomedical applications involving novel coronavirus disease (COVID-19) diagnosis, treatment, and prophylactic intervention. Strategies for the rapid and reliable isolation of these antibodies, especially potent neutralizing antibodies, are critical toward improved COVID-19 response and informed future response to emergent infectious diseases. In this study, single B cell screening was used to interrogate antibody repertoires of immunized mice and isolate antigen-specific IgG1+ memory B cells. Using these methods, high-affinity, potent neutralizing antibodies were identified that target the receptor-binding domain of SARS-CoV-2. Further engineering of the identified molecules to increase valency resulted in enhanced neutralizing activity. Mechanistic investigation revealed that these antibodies compete with ACE2 for binding to the receptor-binding domain of SARS-CoV-2. These antibodies may warrant further development for urgent COVID-19 applications. Overall, these results highlight the potential of single B cell screening for the rapid and reliable identification of high-affinity, potent neutralizing antibodies for infectious disease applications.


Assuntos
Anticorpos Neutralizantes/química , Linfócitos B/virologia , COVID-19/sangue , COVID-19/imunologia , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Sítios de Ligação/imunologia , Produtos Biológicos , Feminino , Células HEK293 , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Memória Imunológica , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Glicoproteína da Espícula de Coronavírus , Vacinas
16.
Adv Ther (Weinh) ; 4(8)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34485685

RESUMO

Photothermal therapy (PTT) and neoantigen cancer vaccine each offers minimally invasive and highly specific cancer therapy; however, they are not effective against large established tumors due to physical and biological barriers that attenuate thermal ablation and abolish anti-tumor immunity. Here, we designed and performed comparative study using small (~ 50 mm3) and large (> 100 mm3) tumors to examine how tumor size affects the therapeutic efficiency of PTT and neoantigen cancer vaccine. We show that spiky gold nanoparticle (SGNP)-based PTT and synergistic dual adjuvant-based neoantigen cancer vaccine can efficiently regress small tumors as a single agent, but not large tumors due to limited internal heating and immunosuppressive tumor microenvironment (TME). We report that PTT sensitizes tumors to neoantigen cancer vaccination by destroying and compromising the TME via thermally induced cellular and molecular damage, while neoantigen cancer vaccine reverts local immune suppression induced by PTT and shapes residual TME in favor of anti-tumor immunity. The combination therapy efficiently eradicated large local tumors and also exerted strong abscopal effect against pre-established distant tumors with robust systemic anti-tumor immunity. Thus, PTT combined with neoantigen cancer vaccine is a promising nano-immunotherapy for personalized therapy of advanced cancer.

17.
Pharmaceutics ; 13(5)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063671

RESUMO

While primaquine has long been used for malaria treatment, treatment failure is common. This study aims to develop a population pharmacokinetic model of primaquine and its metabolite, carboxyprimaquine, and examine factors influencing pharmacokinetic variability. The data was obtained from a clinical study in 24 Korean subjects randomly assigned to normal and obese groups. The participants received primaquine 15 mg daily for 4 days and blood samples were collected at day 4. Pharmacokinetic modeling was performed with NONMEM and using simulations; the influences of doses and covariates on drug exposure were examined. A minimal physiology-based pharmacokinetic model connected with a liver compartment comprehensively described the data, with CYP450 mediated clearance being positively correlated with the body weight and CYP2D6 activity score (p < 0.05). In the simulation, while the weight-normalized area under drug concentration for primaquine in the obese group decreased by 29% at the current recommended dose of 15 mg, it became similar to the normal weight group at a weight-normalized dose of 3.5 mg/kg. This study has demonstrated that the body weight and CYP2D6 activity score significantly influence the pharmacokinetics of primaquine. The developed model is expected to be used as a basis for optimal malaria treatment in Korean patients.

18.
Biomaterials ; 274: 120844, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33962217

RESUMO

Identification of tumor-specific mutations, called neoantigens, offers new exciting opportunities for personalized cancer immunotherapy. However, it remains challenging to achieve robust induction of neoantigen-specific T cells and drive their infiltration into the tumor microenvironment (TME). Here, we have developed a novel polyethyleneimine (PEI)-based personalized vaccine platform carrying neoantigen peptides and CpG adjuvants in a compact nanoparticle (NP) for their spatio-temporally concerted delivery. The NP vaccine significantly enhanced activation and antigen cross-presentation of dendritic cells, resulting in strong priming of neoantigen-specific CD8+ T cells with the frequency in the systemic circulation reaching as high as 23 ± 7% after a single subcutaneous administration. However, activated CD8+ T cells in circulation exhibited limited tumor infiltration, leading to poor anti-tumor efficacy. Notably, local administration of stimulator of interferon genes (STING) agonist promoted tumor infiltration of vaccine-primed CD8+ T cells, thereby overcoming one of the major challenges in achieving strong anti-tumor efficacy with cancer vaccination. The NP vaccination combined with STING agonist therapy eliminated tumors in murine models of MC-38 colon carcinoma and B16F10 melanoma and established long-term immunological memory. Our approach provides a novel therapeutic strategy based on combination nano-immunotherapy for personalized cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Vacinas Anticâncer , Animais , Antígenos de Neoplasias , Imunoterapia , Camundongos , Microambiente Tumoral
19.
Adv Sci (Weinh) ; 8(5): 2002577, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717838

RESUMO

Nanoparticles (NPs) can serve as a promising vaccine delivery platform for improving pharmacological property and codelivery of antigens and adjuvants. However, NP-based vaccines are generally associated with complex synthesis and postmodification procedures, which pose technical and manufacturing challenges for tailor-made vaccine production. Here, modularly programmed, polyethyleneimine (PEI)-based NP vaccines are reported for simple production of personalized cancer vaccines. Briefly, PEI is conjugated with neoantigens by facile coupling chemistry, followed by electrostatic assembly with CpG adjuvants, leading to the self-assembly of nontoxic, sub-50 nm PEI NPs. Importantly, PEI NPs promote activation and antigen cross-presentation of antigen-presenting cells and cross-priming of neoantigen-specific CD8+ T cells. Surprisingly, after only a single intratumoral injection, PEI NPs with optimal PEGylation elicit as high as ≈30% neoantigen-specific CD8+ T cell response in the systemic circulation and sustain elevated CD8+ T cell response over 3 weeks. PEI-based nanovaccines exert potent antitumor efficacy against pre-established local tumors as well as highly aggressive metastatic tumors. PEI engineering for modular incorporation of neoantigens and adjuvants offers a promising strategy for rapid and facile production of personalized cancer vaccines.

20.
Adv Drug Deliv Rev ; 169: 137-151, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33340620

RESUMO

The novel corona virus termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread throughout the globe at a formidable speed, causing tens of millions of cases and more than one million deaths in less than a year of its report in December 2019. Since then, companies and research institutions have raced to develop SARS-CoV-2 vaccines, ranging from conventional viral and protein-based vaccines to those that are more cutting edge, including DNA- and mRNA-based vaccines. Each vaccine exhibits a different potency and duration of efficacy, as determined by the antigen design, adjuvant molecules, vaccine delivery platforms, and immunization method. In this review, we will introduce a few of the leading non-viral vaccines that are under clinical stage development and discuss delivery strategies to improve vaccine efficacy, duration of protection, safety, and mass vaccination.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Sistemas de Liberação de Medicamentos/métodos , Vacinas Sintéticas/administração & dosagem , Animais , COVID-19/genética , Vacinas contra COVID-19/química , Vacinas contra COVID-19/genética , Humanos , Vacinas de DNA/administração & dosagem , Vacinas de DNA/química , Vacinas de DNA/genética , Vacinas Sintéticas/química , Vacinas Sintéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...